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Abstract

When we observe the effect of an experiment on mul-
tiple outcomes, the interpretation will be sensitive to
how those outcomes covary across units. We derive
a number of results in a Gaussian model of multi-
outcome experimentation - (1) the observed effect on
one outcome will be a negative signal about the true
effect on another outcome, under conditions that are
likely to hold for many experiments; (2) in some cases,
the inferred treatment-effect on an outcome can be de-
creasing in its own observed treatment-effect; (3) naive
approaches to metric “surrogacy,” when one metric
is used to predict another, will be biased in the di-
rection of the unit-level covariance, and naive causal
estimates will suffer attenuation bias; (4) composite
metrics, i.e. weighted averages of multiple outcomes,
will often be shrunk by more than their components.
Finally we show how to combine multivariate shrink-
age with network effects and dynamic effects to yield
a single matrix which maps outcomes of an experi-
ment into the best estimate of the long-run aggregate
impact of a policy.

Introduction

Suppose that you run an experiment with N units as-
signed to treatment and control groups, and define y1
and y2 as the observed treatment effects for outcomes
1 and 2. We can decompose the observed outcomes
into treatment-effects and noise:

(
y1

y2

)
︸ ︷︷ ︸

outcomes

=
(

t1

t2

)
︸ ︷︷ ︸

treatment effects

+
(

e1

e2

)
︸ ︷︷ ︸

noise

In this paper we will be particularly interested in the
covariances of the treatment effects, and of the noise.

The noise terms e1 and e2 represent the sampling er-
ror, and therefore will have variances and covariances
corresponding to the variances and covariances of the
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individual units, multiplied by a factor of 2
N .1.

The variances and covariances of t1 and t2 represent
the experimenter’s priors, and so are often difficult to
quantify. If we are willing to identify priors with some
set of previously-run experiments, i.e. an “empirical-
Bayes” technique, we can recover them from the data
using this relationship between covariance matrices:

Σy = Σt + 2
N

Σu,

where Σu is the unit-level covariance matrix. The
following graph illustrates a case with negatively-
correlated treatment effects, positively correlated
noise, and uncorrelated outcomes.

treatment
effects

t1

t2 noise

e1

e2 outcomes

y1

y2

If we assume that everything has a normal distribu-
tion, we have a crisp expression for how the posterior
expectations depend on the observed outcomes. For
an arbitrary number of outcomes we can write this
as:

E[t|y] = µt + Σt(Σt + 1
N

Σu)−1(y − µt).

With just two outcomes it becomes:

E[t1|y1, y2] = µ1+

|Σy|−1
(

(σ2
t1(σ2

t2 + σ2
e2) − γt(γt + γe))(y1 − µ1)

+ (γtσ
2
e1 − σ2

t1γe)(y2 − µ2)
)

Where γt = cov(t1, t2) and γe = cov(e1, e2). The
result can be visualized with a vector field showing

1Throughout we assume that the treatments change only the
mean, not the variance, of outcomes.
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the mapping from a pair of observed outcomes,
(

y1
y2

)
,

into a pair of inferred outcomes, E[ t1
t2

| y1
y2

].

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

y1 − µ1

σ2
t1=3, σ2

t2=3, γt=0,
σ2

e1=1, σ2
e2=1, γe=.8.

y 2
−

µ
2

Arrows representing E[t1|y1, y2] − y1
and E[t2|y1, y2] − y2.

Interpreting multi-outcome experiments.

We can make a few broad observations, based on the
equation above.

First, if there is no covariance either across treatment-
effects (γt = 0), or across units (γe = 0), then the
expression reduces to univariate shrinkage, i.e.:

E[t1|y1, y2] = E[t1|y1] = µ1 + σ2
t1

σ2
t1 + σ2

e1
(y1 − µ1).

Some evidence on the importance of the covariance
matrices comes from Coey and Cunningham (2019),
which finds that multivariate shrinkage of exper-
iment results significantly outperforms univariate
shrinkage, but was not able to establish how much
of this was due to cross-outcome relationships in the
treatment-effects vs the noise.

Second, if there is only covariance across treatment-
effects, and that covariance is positive, (γt > 0, γe =
0), then each observed outcome is “good news” about
the treatment-effect on the other outcome, i.e.:

dE[t1|y1, y2]
dy2

> 0,
dE[t2|y1, y2]

dy1
> 0.

Intuitively – if you expect your experiment to shift
both outcomes in the same direction, then seeing a

positive effect on one outcome will positively rein-
force your belief in the effect on the other outcome.

Good News is Bad News (weak version).

When the relative covariance of noise is stronger
than the relative covariance of the treatment-effects,
then we will find that a higher-than-expected out-
come on outcome 2 will be a negative signal about the
treatment-effect on outcome 1. Formally:

dE[t1|y1, y2]
dy2

< 0 ⇐⇒ γt

σ2
t1

<
γe

σ2
e1

In many contexts we believe that this condition is
likely to hold. Most desirable outcomes tend to
have positive covariance across experimentation units
(γe > 0), e.g. among people wealth, physical health,
mental health, and education all tend to covary posi-
tively. Among users of online services, those who are
more active on one dimension tend to be more active
on all others. On the other hand, treatments tested
in experiments often find trade-offs with other out-
comes (γt < 0): e.g. promoting one part of a product
tends to cannibalize time spent on other parts.

Example 1. A school runs an experiment with a new
English textbook, and they find an increase in English
test-scores. Suppose they also find an increase in
Maths test-scores: this would be bad news about the
true impact on English ability if (a) there is strong pos-
itive correlation among students between English and
Maths test-scores, (b) there is not a strong prior rea-
son to believe that there would be a positive spillover
on Maths test-scores.

Good News is Bad News (strong version).

In some cases an even stronger result holds: y1 is bad
news about t1 itself:

dE[t1|y1, y2]
dy1

< 0 ⇐⇒ 1 <
γt

σ2
t1

γt + γe

σ2
t2 + σ2

e2
.

The condition requires there be non-zero covariance
in both the treatment-effects and the unit-level out-
comes (i.e., both γt ̸= 0 and γe ̸= 0).2 We also can see
that the two covariances must have the same sign –
either both positive or both negative. Intuitively, this
will occur when treatment-effects are closely corre-
lated, such that y2 is a relatively better signal for t1
than y1 itself, and so y1 instead becomes a signal for
the correlated noise.

2If γe = 0 the condition will never hold, because we know
that γt

σ2
t1σ2

t2
represents the correlation in treatment effects, which is

bounded between 0 and 1.
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Example 2. You run an experiment where you ran-
domly select married households and provide the wife
with vocational training and education, and measure
the impact on both the wife’s income, and the overall
household’s income. You find that average annual fe-
male labor income increased by $1,000. However, you
also find that average annual household income in-
creased by $3,000, implying the average male income
in the treated group is $2,000 higher than in the con-
trol group. If you believe that (a) the spillover effect
from wife’s income to husband’s income is likely to
be small or negative, and (b) the correlation between
wife’s and husband’s income is strong, then this evi-
dence should cause you to decrease your estimate of
the true impact on both the wife’s income and the total
income.

The following vector-field illustrates the strong ver-
sion of the “good news is bad news” effect: it can be
seen that, for a given value of y2, progressively higher
values of y1 are mapped into relatively lower values
of t1.
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Arrows representing E[t1|y1, y2] − y1
and E[t2|y1, y2] − y2.

Surrogate Metrics

When we wish to estimate effects on a noisy outcome,
investigators often try to find a “surrogate” outcome
that is a good predictor of the primary outcome but
more precisely measured.3 Sometimes surrogacy rela-
tionships are estimated by a simple regression across
experiment outcomes. However this will give a bi-
ased estimate because the coefficient will pick up the

3See Athey et al. (2016) for more discussion.

covariance between units, as well as covariance be-
tween experiments:

β̂ = dE[y2|y1]
dy1

= cov(y1, y2)
var(y1) = γt + γe

σ2
t1 + σ2

e1
.

Figure 1 plots a set of AA tests with no true treat-
ment effect on either outcome. Despite the lack of
any relationship between treatment-effects, we find
a significant relationship between outcomes, due to
covariance among units.

However the quantity of interest for a surrogate vari-
able is instead:

dE[t2|y1]
dy1

= cov(t2, y1)
var(y1) = γt

σ2
t1 + σ2

e1
.

To calculate the correct quantity we can estimate
the covariance across treatment-effects by taking the
difference between observed covariances across ex-
periments and that expected from AA-tests: γ̂t =
γy − 1

N γu.

Figure 1: A simulated scatter-plot showing 20 experi-
ments, with N=1,000,000, σ2

e1 = σ2
e2 = 1, with correla-

tion 0.8. The experiments are all AA-tests, i.e. there
are no true treatment effects, yet a regression of y2
on y1 will consistently yield statistically-significant
coefficients of around 0.8.

The bias described will decline with sample-size N,
but is invariant to the number of experiments. Addi-
tionally, if there is no true treatment-effect on outcome
1 (σ2

t1 = 0), as in the AA-tests illustrated in Figure 1,
then the estimated β̂ will always equal γe

σ2
e

, even as
the sample-size goes to infinity.
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Causal Effects

In other circumstances we wish to understand the
relationship between treatment-effects, i.e.:4

dE[t2|t1]
dt1

= γt

σ2
t1

.

Again this does not correspond to the quantity recov-
ered by a regression, β̂ above. There are now two
biases: (1) an “activity” bias due to γe in the numer-
ator of β̂; (2) an attenuation bias due to σ2

e1 in the
denominator of β̂.

Example 3. You run a series of A/B experiments
meant to improve music recommendations and are
interested in how these experiments impact time-
spent on music, and potential cannibalization of
time-spent on podcasts. Estimating a cannibaliza-
tion rate by regressing podcast-time-spent on
music-time-spent, across experiments, would
lead to underestimating the true rates of cannibaliza-
tion for two reasons: (1) positive unit-level covariance
between the two outcomes causing positive correlation
between the two outcomes, (2) noise in the estimate
of the treatment-effects on music-time-spent,
causing attenuation towards zero.

Composite Metrics

We sometimes want to estimate the impact of an ex-
periment on a “composite” outcome, a linear combi-
nation of n outcomes with weights w = (w1, . . . , wn).
It is useful to calculate the signal-to-noise ratio (SNR)
of the composite metric, ȳ:

SNRȳ = V ar[w′t]
V ar[w′e] = w′Σtw

w′Σew
.

The signal-noise ratio is a useful statistic to track be-
cause an outcome with a higher SNR will have (a) a
lower shrinkage factor, i.e. the posterior E[t|y] will be
relatively closer to the observed y, and (b) will have
a higher fraction of experiments that are statistically
significantly different from zero:5

shrinkage factor =1 − E[t|y] − µ

y − µ
= 1

1 + SNR
,

fraction significant =P (|y − µ| > 1.96σe)

=2
(

1 − Φ( 1.96
1 + SNR

)
)

.

4One example would be when we have reason to believe that
t1 causes t2, and we wish to use experiments as instruments to es-
timate the causal relationship, see Peysakhovich and Eckles (2018)
for more on this.

5Under the assumption that t is mean-zero.

Where Φ is the CDF of a standard Normal distribu-
tion.

We can make two observations about the signal-noise
ratio of a composite metric:

1. If all covariance terms are zero, across treatments
and units, then the SNR of ȳ will be a weighted
average of the SNR of each of the components:

SNRȳ =
∑

w2
i σ2

ti∑
w2

i σ2
ei

=
∑

i

w2
i σ2

ei∑
j w2

j σ2
ej

SNRyi
.

This implies that adding a new component to
a composite metric will increase its SNR (and
so increase the fraction of statistically-significant
experiments) if and only if the new component
has a higher SNR than the existing composite
metric.

2. If the outcomes have positive covariance across
units, but zero covariance across treatments, the
composite’s signal-noise ratio will be below the
weighted-average SNR. This can be seen in the
first equation for SNRȳ: the covariance terms
in the error will show up in the denominator,
causing the SNR to decline.

These observations are consistent with the general
observation that tech companies often struggle when
dealing with metrics that are designed to reflect the
full business impact of an experiment: if they add all
outcomes of interest into the composite metric, the
composite will be relatively noisy for two reasons: (1)
because some components are noisy, and (2) because
of positive covariance in the noise components.

An optimally shrunk composite metric will take into
account the noise. If there is no covariance then we
have:

E[t|y1, . . . , yn] =
n∑

i=1

SNRi

1 + SNRi
wiyi.

This estimate of the composite will appropriately
shrink noisy components, and so there is no longer a
penalty for adding additional components to the com-
posite. If there is covariance then the full expression
will be:

E[t̄|y] = w′E[t|y].

Network and Dynamic Effects

Given an observed experimental outcome, y, the rele-
vant policy question is typically the aggregate long-
run effect on outcomes, and there are three important
considerations: (1) adjusting for experimental noise,
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as we have discussed in this paper, (2) adjusting for
network-effects, and (3) adjusting for dynamic effects.
Here we briefly show how all three can be expressed
in a very simplifed model. Suppose the behaviour of
unit i at time t + 1 depends on (i) some user-specific
constant term, ai, (ii) their own prior behaviour, xt,i,
and (iii) the global average x̄t = 1

n

∑
xi,t, as:

xi,t+1 =ai + Bxi,t + Cx̄t.

Solving for equilibrium, setting xi,t+1 = xi,t we get:

x̄ = (I − B − C)−1ā.

Where ā = 1
n

∑
i ai. If we assume that all treatment-

effects operate additively on each unit, i.e., through
the term ai, then we can combine this with multi-
variate shrinkage to get an overall mapping from
experiment-level results to long-term aggregate im-
pact, ∆x̄:

∆x̄ =(I − B − C)−1
(

µt + Σt(Σt + 1
N

Σx)−1(y − µy)
)

.

Conclusion

We think it is not widely understood how the covari-
ance of treatment effects and noise affect the interpre-
tation of multi-outcome experiments.

In many contexts outcomes will tend to have positive
covariance across units, but zero or negative covari-
ance across different types of intervention, which has
the following implications: (1) observing an unex-
pected positive side-effect in an experiment is bad
news about the strength of the primary effect, (2)
estimating “surrogate” outcomes using correlations
across experiments will systematically over-state the
strength of the surrogacy relationship, (3) estimating
causal effects using correlations across experiments
will have an additional bias, with ambiguous sign, (4)
composite metrics will tend to have a lower signal-
noise ratio than their components, and so be less-often
statistically significant.

We hope in future work to clarify how broadly these
results extend to other distributions, given the obser-
vation that treatment-effects are typically fat-tailed.6

Appendix: Derivations

We start with the most general formula for updat-
ing one vector of variables, t, having observed the

6See Azevedo et al. (2019) and references therein.

realization of some other vector, y, given they have a
Gaussian joint distribution:

V

(
t

y

)
=

(
Σt Σt,y

ΣT
t,y Σy

)
.

Using the Schur complement we have:

E[t|y] =µt + Σt,yΣ−1
y (y − µy)

V[t|y] =Σt − Σt,yΣ−1
t,y ΣT

t,y.

Intuitively, updating to infer E[t|y], can be thought of
in three steps: (1) we take the unexpected part of the
results, y − µy, (2) we normalize it by dividing it by
its own covariance matrix, Σy, and (3) we transpose
it into the t-space by multiplying it by the covariance
between signal and truth Σt,y .7

When we know that y represents the results of an
experiment with sample-size N , we can write:

y =t +
N∑
i

xi

V
(

t

y

)
=

(
Σt Σt

ΣT
t Σt + 1

N Σx

)
Then the optimal Bayesian inference about the trea-
ment effects, t, from the observed outcomes y, will
be:

E[t|y] = µt + Σt(Σt + 1
N

Σx)−1(y − µy).

We can also write the solution with respect to the
precision matrix, Φ = V

(
t
y

)−1
:

E[t|y] = µt −
n∑

j=1

Φt1,y1

Φt1,t1
(yj − µy,j),

If Φt1,y1 = 0 then t1 and y1 are conditionally indepen-
dent, and so y1 has no informational content relevant
to t1.
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